پیشبینی میزان اعتیاد به شبکههای اجتماعی مجازی براساس انعطافپذیری شناختی و سلامت روانی دانشآموزان دوم متوسطه
محورهای موضوعی : روانشناسی
سیده فاطمه موسوی نژاد
1
,
فاطمه شهابی زاده
2
*
1 - گروه روانشناسی بالینی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران.
2 - گروه روانشناسی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران
کلید واژه: اعتیاد به شبکه های اجتماعی مجازی, انعطاف پذیری شناختی, سلامت روان, دوران همه گیری کووید 19,
چکیده مقاله :
پژوهش حاضر با هدف تبیین نقش انعطافپذیری شناختی و سلامت روانی در میزان استفاده از شبکههای اجتماعی مجازی در میان دانشآموزان دوره دوم متوسطه شهر بیرجند طی دوران همهگیری کووید–19 انجام شد. این پژوهش از نوع توصیفی–همبستگی بود. جامعه آماری شامل تمامی دانشآموزان دختر دوره دوم متوسطه شهر بیرجند در سال تحصیلی ۱۴۰۱–۱۴۰۰ (به تعداد ۵۷۶۶ نفر) بود. از این جامعه، بر اساس جدول کرجسی و مورگان، ۳۶۰ نفر بهصورت نمونهگیری در دسترس انتخاب شدند. ابزار گردآوری دادهها شامل پرسشنامه اعتیاد به شبکههای اجتماعی مبتنی بر تلفن همراه، پرسشنامه سلامت عمومی و سیاهه انعطافپذیری شناختی دنیس و وندر وال بود. یافتهها نشان داد مؤلفههای سلامت عمومی و انعطافپذیری شناختی میتوانند اعتیاد به شبکههای اجتماعی در دوران همهگیری را با توان تبیین ۴۴ درصد، بهصورت معنادار پیشبینی کنند (158/12 = F(7)؛ 001/0>p). مؤلفهها، زیرمقیاس اضطراب با ضریب بتای 24/0 بیشترین سهم یگانه را در تبیین متغیر ملاک (اعتیاد به شبکههای اجتماعی) داشت. براساس نتایج میتوان نتیجه گرفت که سلامت عمومی و انعطافپذیری شناختی از پیشبینیکنندههای مهم اعتیاد به رسانههای اجتماعی هستند. این یافته نشان میدهد ترکیب این دو عامل میتواند بخش قابلتوجهی از واریانس استفاده از رسانههای اجتماعی را توضیح دهد. در نظر گرفتن سلامت عمومی و انعطافپذیری شناختی، درکی جامعتر از عواملی ارائه میدهد که در بروز اعتیاد به رسانههای اجتماعی نقش دارند.
The research investigated the role of cognitive flexibility and mental health in using virtual social networks among secondary school students in Birjand during the COVID-19 pandemic. This research was descriptive and correlational. The statistical population of this research included all female students of the second year of Birjand secondary school in the academic year 2021 to 2022, whose number was 5766. In this study, 360 people were selected as a sample based on the Karjesi and Morgan table and were tested through accessible sampling. The data collection tools were questionnaires on addiction to social networks based on mobile phones, (GHQ-28) by Goldberg, cognitive flexibility by Dennis VanderWaal (CFI). The findings showed that the components of general health and cognitive flexibility significantly predicted addiction to social networks during the epidemic with 44% explanatory power (F (7 = 12.158); p< 0.001). Meanwhile, the beta coefficient of the anxiety subscale was equal to 24% and this means that this variable has the strongest single contribution in explaining the criterion variable (addiction to social networks). According to the research results, it can be said that general health and cognitive flexibility are important predictors of social media addiction. This indicates that a combination of these factors can account for a significant portion of the variance in social media use. Incorporating general health and cognitive flexibility provides a more comprehensive understanding of the factors that contribute to social media addiction.
Anand, V., Verma, L., Aggarwal, A., Nanjundappa, P., & Rai, H. (2021). COVID-19 and psychological distress: Lessons for India. Plos one, 16(8), e0255683. DOI:10.1371/journal.pone.0255683
Arendt, F., Markiewitz, A., Mestas, M., & Scherr, S. (2020). COVID-19 pandemic, government responses, and public mental health: Investigating consequences through crisis hotline calls in two countries. Social Science & Medicine, 265, 113532. DOI:10.1016/j.socscimed.2020.113532
Ayouni, I., Maatoug, J., Dhouib, W., Zammit, N., Fredj, S. B., Ghammam, R., & Ghannem, H. (2021). Effective public health measures to mitigate the spread of COVID-19: a systematic review. BMC public health, 21(1), 1015. DOI:10.1186/s12889-021-11111-1
Bagheri Sheikhan Gafsheh, F., Sharifipour Choukami, Z., Tajbakhsh, K., Moghaddam, A., & Hajialiani, V. (2022). The relationship between social networks, cognitive flexibility, and anxiety sensitivity in predicting coronaphobia among students. Psychological Achievements, 29(1), 209–228. DOI:10.22055/psy.2022.36702.2673
Banerjee, D., Vaishnav, M., Rao, T. S., Raju, M. S. V. K., Dalal, P. K., Javed, A., ... & Jagiwala, M. P. (2020). Impact of the COVID-19 pandemic on psychosocial health and well-being in South-Asian (World Psychiatric Association zone 16) countries: A systematic and advocacy review from the Indian Psychiatric Society. Indian Journal of Psychiatry, 62(Suppl 3), S343-S353. DOI:10.4103/psychiatry.IndianJPsychiatry_1002_20
Cheng, C., Lau, H. P. B., & Chan, M. P. S. (2014). Coping flexibility and psychological adjustment to stressful life changes: a meta-analytic review. Psychological bulletin, 140(6), 1582. DOI:10.1037/a0037913
Dabiri, S. (2023). Predicting tendency to addiction based on perceived social support and psychological flexibility in adolescents. The 2nd National Conference on Psychotherapy of Iran, Ardabil, Iran. https://civilica.com/doc/1751788
Dawson, D. L., & Golijani-Moghaddam, N. (2020). COVID-19: Psychological flexibility, coping, mental health, and wellbeing in the UK during the pandemic. Journal of contextual behavioral science, 17, 126-134. DOI:10.1016/j.jcbs.2020.07.010
Dennis, J. P., & Vander Wal, J. S. (2010). The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognitive therapy and research, 34, 241-253. DOI:10.1007/s10608-009-9276-4
Diamond, A. (2013). Executive functions. Annual review of psychology, 64(1), 135-168. doi: 10.1146/annurev-psych-113011-143750
Godara, M., Everaert, J., Sanchez-Lopez, A., Joormann, J., & De Raedt, R. (2023). Interplay between uncertainty intolerance, emotion regulation, cognitive flexibility, and psychopathology during the COVID-19 pandemic: a multi-wave study. Scientific Reports, 13(1), 9854. DOI:10.1038/s41598-023-36211-3
Güldal, Ş., Kılıçoğlu, N. A., & Kasapoğlu, F. (2022). Psychological flexibility, coronavirus anxiety, humor and social media addiction during COVID-19 pandemic in Turkey. International Journal for the Advancement of Counselling, 44(2), 220-242. DOI:10.1007/s10447-021-09461-x
He, Z., Li, M., Liu, C., & Ma, X. (2022). Common predictive factors of social media addiction and eating disorder symptoms in female college students: State anxiety and the mediating role of cognitive flexibility/sustained attention. Frontiers in Psychology, 12, 647126. https://doi.org/10.3389/fpsyg.2021.647126
Inozu, M., Gök, B. G., Tuzun, D., & Haciomeroglu, A. B. (2023). Does cognitive flexibility change the nature of the relationship between intolerance of uncertainty and psychological symptoms during the COVID-19 outbreak in Turkey? Current Psychology, 42(20), 17412-17423. DOI:10.1007/s12144-021-02450-8
Jabeen, F., Tandon, A., Sithipolvanichgul, J., Srivastava, S., & Dhir, A. (2023). Social media-induced fear of missing out (FoMO) and social media fatigue: The role of narcissism, comparison and disclosure. Journal of Business Research, 159, 113693. DOI:10.1016/j.jbusres.2023.113693
Jung, S. J., Lee, Y., Jeon, Y. J., Kang, S., Shin, J. I., & Jung, Y. C. (2021). Social Media Use and Mental Health During the COVID-19 Pandemic: A Meta-Analysis of 14 Cross-Sectional Studies. Available at SSRN 3884947. DOI:10.21203/rs.3.rs-1270456/v1
Kaçar, G. Y. (2023). The Role of Online Communication Platforms in Maintaining Social Connectedness When Face-to-face Communication is Restricted. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (51), 421-436. DOI:10.52642/susbed.1290299
Kasbi, Z. (2023). The role of corona involvement severity and corona stress in predicting oppositional defiant disorder mediated by parental aggression. Journal of Psychology. 27(106), 224-232. DOI:20.1001.1.18808436.1402.27.2.2.8
Kindred, R., & Bates, G. W. (2023). The influence of the COVID-19 pandemic on social anxiety: A systematic review. International journal of environmental research and public health, 20(3), 2362. DOI:10.3390/ijerph20032362
Khajeahmadi, M., Pooladi, S., & Bahreini, M. (2017). Design and assessment of psychometric properties of the addiction to mobile questionnaire based on social networks. Iranian Journal of Psychiatric Nursing, 4(4), 43-51. DOI: 10.21859/ijpn-04046
Khawaja, I. S., Westermeyer, J. J., Gajwani, P., & Feinstein, R. E. (2009). Depression and coronary artery disease: the association, mechanisms, and therapeutic implications. Psychiatry (Edgmont), 6(1), 38.
Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International journal of environmental research and public health, 14(3), 311. DOI:10.3390/ijerph14030311
Lee, Y., Jeon, Y. J., Kang, S., Shin, J. I., Jung, Y. C., & Jung, S. J. (2022). Social media use and mental health during the COVID-19 pandemic in young adults: a meta-analysis of 14 cross-sectional studies. BMC Public Health, 22(1), 995. DOI:10.1186/s12889-022-13409-0
Mahoney, L. M., & Tang, T. (2024). Strategic social media: From marketing to social change. John Wiley & Sons. DOI:10.1002/9781119370680
Mittal, S., Sinha, S. & Bhat, S. (2022). The COVID-19 Pandemic and Mental Health. In E. Ovuga, (Ed.). Stress related disorders. https://doi.org/10.5772/intechopen.102947
Momeni, K., & Radmehr, F. (2020). The effectiveness of meta-cognitive therapy on cognitive attention syndrome in female students with social anxiety disorder. Knowledge & Research in Applied Psychology, 21(2), 32-42.
Mujica, A. L., Crowell, C. R., Villano, M. A., & Uddin, K. M. (2022). Addiction by design: Some dimensions and challenges of excessive social media use. Medical Research Archives, 10(2). DOI:10.18103/mra.v10i2.2677
Murphy, C., Lim, W. W., Mills, C., Wong, J. Y., Chen, D., Xie, Y., ... & Donnelly, C. A. (2023). Effectiveness of social distancing measures and lockdowns for reducing transmission of COVID-19 in non-healthcare, community-based settings. Philosophical Transactions of the Royal Society A, 381(2257), 20230132. DOI:10.1098/rsta.2023.0132
Ozimek, P., Brailovskaia, J., Bierhoff, H. W., & Rohmann, E. (2024). Materialism in social media–more social media addiction and stress symptoms, less satisfaction with life. Telematics and Informatics Reports, 13, 100117. https://doi.org/10.1016/j.teler.2024.100117
Nazari, A., Hosseinnia, M., Torkian, S., & Garmaroudi, G. (2023). Social media and mental health in students: a cross-sectional study during the Covid-19 pandemic. BMC psychiatry, 23(1), 458. DOI:10.21203/rs.3.rs-2535464/v1
Sagar, M. E. (2021). Predictive Role of Cognitive Flexibility and Self-Control on Social Media Addiction in University Students. International Education Studies, 14(4), 1-10. DOI:10.5539/ies.v14n4p1
Serafini, G., Parmigiani, B., Amerio, A., Aguglia, A., Sher, L., & Amore, M. (2020). The psychological impact of COVID-19 on the mental health in the general population. DOI:10.1093/qjmed/hcaa201
Shannon, H., Bush, K., Villeneuve, P. J., Hellemans, K. G., & Guimond, S. (2022). Problematic social media use in adolescents and young adults: systematic review and meta-analysis. JMIR mental health, 9(4), e33450. DOI:10.2196/33450
Shareh, H., Farmani, A., & Soltani, E. (2014). Investigating the reliability and validity of the Cognitive Flexibility Inventory (CFI-I) among Iranian university students. Practice in Clinical Psychology, 2(1), 43-50.
Singh, S., Roy, D., Sinha, K., Parveen, S., Sharma, G., & Joshi, G. (2020). Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry research, 293, 113429. DOI:10.1016/j.psychres.2020.113429
Soraci, P., Ferrari, A., Abbiati, F. A., Del Fante, E., De Pace, R., Urso, A., & Griffiths, M. D. (2020). Validation and psychometric evaluation of the Italian version of the Fear of COVID-19 Scale. International journal of mental health and addiction, 1-10. DOI:10.1007/s11469-020-00277-1
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics (Vol. 6, pp. 497-516). Boston, MA: pearson.
Tong, K., Fu, X., Hoo, N. P., Mun, L. K., Vassiliu, C., Langley, C., ... & Leong, V. (2024). The development of cognitive flexibility and its implications for mental health disorders. Psychological Medicine, 54(12), 3203-3209. DOI:10.1017/S0033291724001508
Trauthig, I. K., & Woolley, S. C. (2023). “On WhatsApp I say what I want”: Messaging apps, diaspora communities, and networked counterpublics in the United States. New Media & Society, 14614448231203695. DOI:10.1177/14614448231203695
Troll, E. S., Friese, M., & Loschelder, D. D. (2021). How students’ self-control and smartphone-use explain their academic performance. Computers in Human Behavior, 117, 106624. DOI:10.31234/osf.io/27stp
Vogel, E. A., Rose, J. P., Roberts, L. R., & Eckles, K. (2014). Social comparison, social media, and self-esteem. Psychology of popular media culture, 3(4), 206. https://doi.org/10.1037/ppm0000047
Wang, X., Hegde, S., Son, C., Keller, B., Smith, A., & Sasangohar, F. (2020). Investigating mental health of US college students during the COVID-19 pandemic: Cross-sectional survey study. Journal of medical Internet research, 22(9), e22817. DOI:10.2196/preprints.22817
Whiting, D. L., Deane, F. P., Simpson, G. K., McLeod, H. J., & Ciarrochi, J. (2017). Cognitive and psychological flexibility after a traumatic brain injury and the implications for treatment in acceptance-based therapies: A conceptual review. Neuropsychological rehabilitation, 27(2), 263-299. DOI:10.1080/09602011.2015.1062115
Wu, X., Wang, Z., Zhang, H., Yuan, P., Yu, Q., Zhou, Z., & Zhao, Q. (2021). Effects of internet language related to COVID-19 on mental health in college students: the mediating effect of cognitive flexibility. Frontiers in psychology, 12, 600268. DOI:10.3389/fpsyg.2021.600268